Usage
Covariance(x, y = NULL, model, param = NULL, dim = if
(!missing(Distances)) { if (is.matrix(x)) ncol(x) else 1},
Distances, fctcall = c("Cov", "Variogram", "CovMatrix"))
CovarianceFct(x, y = NULL, model, param = NULL, dim = if
(!missing(Distances)) { if (is.matrix(x)) ncol(x) else 1},
Distances, fctcall = c("Cov", "Variogram", "CovMatrix"))
CovMatrix(x, y = NULL, model, param = NULL, dim = if
(!missing(Distances)) { if (is.matrix(x)) ncol(x) else 1}, Distances)
DeleteAllRegisters()
DeleteRegister(nr=0)
DoSimulateRF(n = 1, register = 0, paired=FALSE, trend=NULL)
InitSimulateRF(x, y = NULL, z = NULL, T=NULL, grid=!missing(gridtriple),
model, param, trend, method = NULL, register = 0,
gridtriple, distribution=NA)
InitGaussRF(x, y = NULL, z = NULL, T=NULL, grid=!missing(gridtriple),
model, param, trend=NULL, method = NULL, register = 0, gridtriple)
GaussRF(x, y = NULL, z = NULL, T=NULL, grid=!missing(gridtriple), model,
param, trend=NULL, method = NULL, n = 1, register = 0, gridtriple,
paired=FALSE, PrintLevel=1, Storing=TRUE, ...)
Variogram(x, model, param = NULL, dim = if (!missing(Distances))
{ if (is.matrix(x)) ncol(x) else 1}, Distances)
InitMaxStableRF(x, y = NULL, z = NULL, grid, model, param, maxstable,
method = NULL, register = 0, gridtriple = FALSE)
MaxStableRF(x, y = NULL, z = NULL, grid, model, param, maxstable,
method = NULL, n = 1, register = 0, gridtriple = FALSE, ...)
EmpiricalVariogram(x, y = NULL, z = NULL, T=NULL, data, grid, bin,
gridtriple = FALSE, phi, theta, deltaT)
Kriging(krige.method, x, y=NULL, z=NULL, T=NULL, grid, gridtriple=FALSE,
model, param, given, data, trend=NULL,pch=".", return.variance=FALSE,
allowdistanceZero = FALSE, cholesky=FALSE)
CondSimu(krige.method, x, y=NULL, z=NULL, T=NULL, grid, gridtriple=FALSE,
model, param, method=NULL, given, data, trend=NULL, n=1, register=0,
err.model=NULL, err.param=NULL, err.method=NULL, err.register=1,
tol=1E-5, pch=".", paired=FALSE, na.rm=FALSE)
RFparameters(...)
hurst(x, y = NULL, z = NULL, data, gridtriple = FALSE, sort=TRUE,
block.sequ = unique(round(exp(seq(log(min(3000, dim[1] / 5)),
log(dim[1]), len=min(100, dim[1]))))),
fft.m = c(1, min(1000, (fft.len - 1) / 10)),
fft.max.length = Inf,
method=c("dfa", "fft", "var"), mode=c("plot", "interactive"),
pch=16, cex=0.2, cex.main=0.85,
PrintLevel=RFoptions()$general$printlevel,height=3.5, ...)
fractal.dim(x, y = NULL, z = NULL, data, grid=TRUE, gridtriple = FALSE,
bin, vario.n=5, sort=TRUE, fft.m = c(65, 86), fft.max.length=Inf,
fft.max.regr=150000, fft.shift = 50, method=c("variogram", "fft"),
mode=c("plot", "interactive"), pch=16, cex=0.2, cex.main=0.85,
PrintLevel = RFoptions()$general$printlevel, height=3.5, ...)
fitvario(x, y=NULL, z=NULL, T=NULL, data, model, param, lower=NULL,
upper=NULL, sill=NA, grid=!missing(gridtriple), gridtriple=FALSE, ...)